技術文章
Technical articles
熱門搜索:
P760/01_2760nm單模垂直腔面發射激光器
VCSEL-20-M激光控制驅動器
ZNSP25.4-1IR拋光硫化鋅(ZnS)多光譜(透明)窗片 0.37-13.5um 25.4X1.0mm(晶體/棱鏡
HB-C0BFAS0832x4 QPSK C波段相干混頻器(信號解調/鎖相放大器等)
Frequad-W-CW DUV 單頻連續激光器 213nm 10mW Frequad-W
ER40-6/125截止波長1300nm 高摻雜EDF摻鉺光纖
GD5210Y-2-2-TO46905nm 硅雪崩光電二極管 400-1100nm
SNA-4-FC-UPC日本精工法蘭FC/UPC(連接器/光纖束/光纜)
WISTSense Point 緊湊型高精度光纖傳感器解調儀(信號解調/鎖相放大器等)
CO2激光光譜分析儀
1030nm超短脈沖種子激光器PS-PSL-1030
FLEX-BF裸光纖研磨機
NANOFIBER-400-9-SA干涉型單模微納光纖傳感器 1270-2000nm
高能激光光譜光束組合的光柵 (色散勻化片)
IRV2000-1X350-2000nm 1倍紅外觀察鏡
S+C+L波段 160nm可調諧帶通濾波器
相干自旋波,即磁振子magnons,在不伴隨電荷輸運和焦耳熱耗散的情況下傳播。在納米級自旋傳播通道中,室溫和長距離自旋波,有助于集成磁振子應用,但在實驗上,具挑戰性。近日,北京師范大學物理學系聯合北京航空航天大學研究人員在NatureMaterials上發文,利用應用變工程,室溫實現了手征磁振子邊緣態的長距離傳播。在錳氧化物薄膜中成功設計并制備了具有長距離反鐵磁耦合自旋螺旋的納米結構。這種結構具有毫米級長度的自旋螺旋通道,以及超低磁性吉爾伯特阻尼(~3.04×10^-4)。圖...
1、背景近紅外激光在激光通信、材料加工及強場物理等領域具有重要應用。近年來,位于近紅外900nm波段的激光器受到越來越多的研究關注。一方面,~900nm激光可應用于泵浦摻Yb3+激光材料、大氣探測和生物醫療。更重要的是~900nm激光可以倍頻產生~450nm深藍激光,在深海通信、激光存儲、激光顯示、原子物理等領域具有重要應用前景。目前,研究者們主要通過半導體激光器、固體激光器和摻釹光纖激光器獲得~900nm激光。基于摻釹石英光纖激光器可實現小型輕量化、波長連續可調、光束質量高...
近日,燕山大學實驗室高壓科學中心田永君院士團隊聯合南京理工大學、寧波大學的研究人員在超硬材料領域實現重大突破:成功合成出硬度達276GPa的超細納米孿晶金剛石塊材,刷新了材料硬度的世界紀錄。相關研究以“Enhancingthehardnessofdiamondthroughtwinrefinementandinterlockedtwins”為題。金剛石是自然界中最硬的材料,在機械加工、油氣開采和地質勘探等領域有著廣泛應用。單晶金剛石的硬度因晶體取向不同而異,介于60-120G...
超表面Metasurfaces是超薄光學元件,通常由有效散射、吸收或發射光的亞波長納米結構密集陣列組成。最初是作為無源器件開發的,現在正在努力開發具有有源光學功能的超表面。該項綜述回顧了基于超表面光電器件的技術現狀,突出了關鍵成就、基本原理和未來技術挑戰。還討論了用于超表面制造、材料選擇、與電子設備的協同設計,以及設備集成的各種策略,所有這些都是超表面技術商業化的關鍵步驟。通過納米級調控光波,超表面Metasurfaces,為光子學設計帶來了新的機遇。這些人工結構層,主要用于...
從蛋白質基序motifs到黑洞,拓撲孤子topologicalsolitons是普遍存在的非線性激發,是魯棒的,并且可以由外場驅動。到目前為止,現有的驅動機制都是以相反的方向加速孤子和反孤子。2024年度,荷蘭阿姆斯特丹大學(UniversiteitvanAmsterdam)JonasVeenstra,CorentinCoulais等,在Nature上發文,報道了孤子的局域驅動機制,在同一方向上,加速了孤子和反孤子:非互易驅動。為了實現這一機制,構建了一種有源力學超材料mec...
將光學顯微鏡帶到盡可能短的長度和時間尺度,一直是長期追求的目標之一,從而將納米基本動力學與凝聚態物質的宏觀功能聯系起來。超分辨率顯微鏡,通過利用光學非線性繞過了遠場衍射極限。通過利用與針尖限制的漸逝光場線性相互作用,近場顯微鏡已經達到了更高的分辨率,通過探索運動中的納米宇宙nanocosm,激發了研究熱點領域。然而,納米級頂點的有限半徑阻礙了獲得原子級分辨率。近日,德國雷根斯堡大學(UniversityofRegensburg)T.Siday,J.Hayes,F.Schieg...
產品介紹:筱曉光子最新推出1064nmPPLN,可以將1064nm的光轉換為532nm的光輸出。(關于該器件的1560nm款的介紹→請點擊這里看往期文章。)該器件使用簡單,搭建光路圖如下所示。首先,我們選定一款波長為1064nm的DFB半導體激光器作為種子源,將其輸入至YDFA(摻鐿光纖放大器)中進行光信號的放大。經過放大的基頻光隨后被用作PPLN(周期性極化鈮酸鋰)晶體的泵浦源,從晶體的輸入端口饋入。在PPLN晶體的二階非線性效應下,基頻光被轉化為倍頻光,即波長為532nm...
長期以來,亞埃級電子顯微分辨率一直局限于像差校正電子顯微鏡,它是理解物質的原子結構和性質的有力工具。近日,美國伊利諾伊大學香檳分校(UniversityofIllinoisUrbana–Champai)KaylaX.Nguyen,Chia-HaoLee,PinshaneY.Huang等,阿貢國家實驗室(ArgonneNationalLaboratory)YiJiang等,在Science上發文,報道了未校正掃描透射電子顯微鏡scanningtransmissionelectr...